
LLNL-JRNL-408738

CLOMP: Accurately
Characterizing OpenMP
Application Overheads

G. Bronevetsky, J. Gyllenhaal, B. R. de Supinski

November 14, 2008

International Journal of Parallel Programming

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

CLOMP: Accurately Characterizing OpenMP
Application Overheads

Greg Bronevetsky, John Gyllenhaal, and Bronis R. de Supinski
Computation Directorate

Lawrence Livermore National Laboratory
Livermore, CA 94551, USA

greg@bronevetsky.com, gyllen@llnl.gov, bronis@llnl.gov

Abstract. Despite its ease of use, OpenMP has failed to gain widespread
use on large scale systems, largely due to its failure to deliver suffi-
cient performance. Our experience indicates that the cost of initiat-
ing OpenMP regions is simply too high for the desired OpenMP usage
scenario of many applications. In this paper, we introduce CLOMP, a
new benchmark to characterize this aspect of OpenMP implementations
accurately. CLOMP complements the existing EPCC benchmark suite
to provide simple, easy to understand measurements of OpenMP over-
heads in the context of application usage scenarios. Our results for sev-
eral OpenMP implementations demonstrate that CLOMP identifies the
amount of work required to compensate for the overheads observed with
EPCC. We also show that CLOMP also captures limitations for OpenMP
parallelization on SMT and NUMA systems. Finally, CLOMPI, our MPI
extension of CLOMP, demonstrates which aspects of OpenMP interact
poorly with MPI when MPI helper threads cannot run on the NIC.

1 Introduction

OpenMP [11] is a simple method to incorporate shared memory parallelism into
scientific applications. While OpenMP has grown in popularity, it has failed to
achieve widespread usage in those applications despite the use of shared memory
nodes as the building blocks of large scale resources on which they run. Many
factors contribute to this apparent contradiction, most of which reflect the fail-
ure of OpenMP-based applications to realize the performance potential of the
underlying architecture. First, the applications run on more than one node of
these large scale resources and, thus, the applications use MPI [10]. While dis-
tributed shared memory OpenMP implemetantions [9] are an option, they fail
to provide the same level of performance.

Application programmers still might have adopted a hybrid OpenMP/MPI
style, using OpenMP for on-node parallelization. However, the performance
achieved discourages that also. OpenMP programs often have higher Amdahl’s
fractions than with MPI for on-node parallelization. Optimization of OpenMP
usage has proven difficult due to a lack of a standard OpenMP profiling interface
and, more so, to a myriad of confusing and often conflicting environment settings
that govern OpenMP performance. In addition, the lack of on-node paralleliza-
tion within MPI implementations has often implied higher network bandwidths
0

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344. (UCRL-ABS-XXXXXX).

with multiple MPI tasks on a node. Perhaps the most important factor has been
a mismatch between the amount of work in typical OpenMP regions of scientific
applications and the overhead of starting those regions.

Multi-core systems will impact many factors that have restricted adoption
of OpenMP. Future networking hardware will not support the messaging rates
required to achieve reasonable performance with an MPI task per core. Also,
greater benefit from on-node parallelization within MPI implementations will
provide similar (or better) aggregate network bandwidth to hybrid OpenMP/MPI
applications compared to using an MPI task per core. Further, shared caches will
provide memory bandwidth benefits to threaded applications.

Since we expect OpenMP to gain popularity with future large scale systems,
we must understand the impact of OpenMP overheads on realistic application
regions. Accurately characterizing them will help motivate chip designers to
provide hardware support to reduce them if necessary. In this paper, we present
CLOMP, a new benchmark that complements the EPCC suite [13] to capture the
impact of OpenMP overheads (the CLOMP benchmark has no relationship to
Intel’s Cluster OpenMP). CLOMP is a simple benchmark that models realistic
application code structure, and thus the associated limits on compiler optimiza-
tion. We use CLOMP to model several application usage scenarios on a range of
current shared memory systems. Our results demonstrate that OpenMP over-
heads limit performance substantially for large scale multiphysics applications
and that NUMA effects can dramatically lower their performance even when
they can compensate for those overheads. We also find that an existing simulta-
neous multithreading (SMT) implementation provides little benefit to realistic
OpenMP scenarios. We then present CLOMPI, our extension of CLOMP to cap-
ture the impact on OpenMP overheads of a hybrid OpenMP/MPI programming
model. Our results show that the impact is often insubstantial, particularly when
MPI helper threads run on the NIC. The impact can be much more significant
without that capability although SMT support on the cores can reduce it.

2 Characteristics of Scientific Applications

CLOMP provides a single easy-to-use benchmark that captures the shared mem-
ory parallelization characteristics of a wide range of scientific applications. We fo-
cused on applications in use at Lawrence Livermore National Laboratory (LLNL),
which are representative of large scale applications. We categorize LLNL applica-
tions as multiphysics applications or as science applications that focus on a par-
ticular physics domain. We need a simple easy-to-use benchmark that accurately
characterizes the performance that a system and its OpenMP implementation
will deliver to the full range of these applications.

Multiphysics applications [4, 5, 14, 16] generally have large, complex code
bases with multiple code regions that contribute significantly to their total run
time. These routines occur in disparate application code sections as well as third
party libraries, such as linear solvers [1, 6]. While the latter may include large
loops that are relatively amenable to OpenMP parallelization, the application
code often has many relatively small but parallelizable loops with dependencies

between the loops that inhibit loop fusion to increase the loop sizes. Further,
the loops frequently occur in disparate function calls related to different physics
packages, making consolidation even more difficult. Many multiphysics applica-
tions use unstructured grids, which imply significant pointer chasing to retrieve
the actual data. Code restructuring to overcome these challenges is difficult: not
only are these applications typically very large (a million lines of code or more)
but the exact routines and the order in which they are executed depends on the
input. However, the individual loops have no internal dependencies and would
appear to be good candidates for OpenMP parallelization.

Science applications typically have fewer lines of code and less diverse exe-
cution profiles. While many still use high performance numerical libraries such
as ScaLAPACK [2], a single routine often contains the primary computational
kernel. Loop sizes available for OpenMP parallelization vary widely, from dense
large matrix operations to very short loops. LLNL science applications include
first principles molecular dynamics codes [8], traditional molecular dynamics
codes [7, 12, 15] and ParaDiS, a dislocation dynamics application [3].

The loop sizes available for OpenMP parallelization depend on the applica-
tion and the input problem. Currently, many HPC applications either use weak
scaling or increase the problem resolution, both of which imply the loop sizes
do not vary substantially as the total number of processors increases. However,
we anticipate systems with millions of processor cores in the near future, which
will make strong scaling attractive. Further, the amount of memory per core will
decrease substantially. Both of these factors will lead to smaller OpenMP loops.
Thus, while we need an OpenMP benchmark that characterizes the range of ap-
plications, capturing the impact of decreasing loop sizes is especially important.

Both multiphysics and science applications run at large scale, using MPI
to communicate between nodes and either MPI or shared memory for on-node
parallelism; the later leads to hybrid OpenMP/MPI applications. Many hybrid
applications use a simple phased approach in which they alternate between
OpenMP and MPI regions. Since MPI plays an important role in evaluating
the performance of these hybrid applications, we also require a benchmark that
evaluates the interaction of compute-intensive threads with features of the MPI
runtime such as message-passing communication and any extra threads that
implement MPI communication. Multiphysics applications use a wide variety
of communication patterns, with stencil patterns being particularly common.
A full evaluation of possible patterns is beyond the scope of a simple bench-
mark so we limit our consideration to a ring communication pattern, which is a
straightforward one dimensional stencil with periodic boundaries.

3 The CLOMP Benchmark Implementation

CLOMP is structured like a multiphysics application. Its state mimics an un-
structured mesh with a set of partitions, each divided into a linked list of zones,
as Figure 1 shows. The linked lists limit optimizations but we allocate the zones
contiguously so CLOMP can benefit from prefetching. The amount of memory
allocated per zone can be adjusted to model different pressures on the memory
system; however, computation is limited to the first 32 bytes of each zone. We

kept the per-zone working set constant because many applications only touch a
subset of a zone’s data on each pass, including our target applications. Although
the actual size varies from application to application, our constant size simplifies
exploration of interactions between the CPU and the memory subsystem.

CLOMP repeatedly executes the loop shown in Figure 2. calc deposit()
represents a synchronization point, such as an MPI call or a computation that de-
pends on the state of all partitions. The subsequent loop contains numPartitions
independent iterations. Each iteration traverses a partition’s linked list of zones,
depositing a fraction of a substance into each zone. We tune the amount of
computation per zone by repeating the inner loop flopScale times.

CLOMP models several possible loop parallelization methods, outlined in
Figure 3. The first applies a combined parallel for construct to the outer
loop, using either a static or a dynamic schedule. We call these configura-
tions for-static and for-dynamic. The second method, called manual, rep-
resents parallelization that the programmer can perform manually to reduce
the Amdahl’s fraction. We enclose all instances of CLOMP’s outer loop in a
parallel construct and partition each work loop among threads explicitly. To
ensure correct execution, we follow the work loop by a barrier and enclose the
calc deposit in a single construct. The last configuration, called best-case
represents the optimistic scenario in which all OpenMP synchronization is in-
stantaneous. It is identical to the manual version, except that the barrier and
single are removed. Although this configuration would not produce correct an-
swers, it provides an upper bound for the performance improvements possible
for the other configurations.

While similar to the schedule benchmark in EPCC that measures the over-
head of the loop construct with different schedule kinds, CLOMP emulates appli-
cation scenarios through several parameters in order to characterize the impact
of that overhead. The numPartitions parameter determines the number of in-
dependent pieces of work in each outer loop while the numZonesPerPart and the
flopScale parameters determine the amount of work in each partition. While
our results in Section 4.2 fix numPartitions to 64, we can vary it as appropriate

PartPtr0

PartPtr1

partArray[4]

PartPtr2

PartPtr3

Zone01
NextZone
ZoneData

Zone02
NextZone
ZoneData

Zone03
NextZone
ZoneData

Zone04
NextZone
ZoneData

Zone11
NextZone
ZoneData

Zone12
NextZone
ZoneData

Zone13
NextZone
ZoneData

Zone14
NextZone
ZoneData

Zone21
NextZone
ZoneData

Zone22
NextZone
ZoneData

Zone23
NextZone
ZoneData

Zone24
NextZone
ZoneData

Zone31
NextZone
ZoneData

Zone32
NextZone
ZoneData

Zone33
NextZone
ZoneData

Zone34
NextZone
ZoneData

Fig. 1. CLOMP data structures

deposit = calc_deposit();

for(part = 0; part < numPartitions; part++) {

for(zone = partArray[part]->firstZone; zone != NULL; zone = zone->nextZone) {

for(scale_count = 0; scale_count < flopScale; scale_count++) {

deposit = remaining_deposit * deposit_ratio;

zone->value += deposit;

remaining_deposit -= deposit; } } }

Fig. 2. CLOMP source code

{

repeat {
#pragma omp parallel for schedule(static)
for(part = 0; part < numPartitions; part++)

….
}
deposit = calc_deposit();

}

repeat {
#pragma omp parallel for schedule(dynamic)
for(part = 0; part < numPartitions; part++) {

….
}
deposit = calc_deposit();

}

#pragma omp parallel
repeat {

for(part = thread_part_min;
part < thread_part_max; part++) {
….

}
#pragma omp barrier
#pragma omp single

deposit = calc_deposit();
}

for-static for-dynamic

manual best-case
#pragma omp parallel
repeat {

for(part = thread_part_min;
part < thread_part_max; part++) {

….
}
deposit = calc_deposit();

}

Fig. 3. Variants of CLOMP

for the application being modeled. The EPCC test fixes the corresponding factor
at 128 per thread and requires source code modification to vary it; which prevents
direct investigation of speed ups for a loop with a fixed total amount of work.
The EPCC test also fixes the amount of work per iteration to approximately
100 cycles; our results show that this parameter directly impacts the speed up
achieved. CLOMP could mimic the EPCC schedule benchmark through proper
parameter settings but those would not correspond to any application scenarios
likely to benefit from OpenMP parallelization.

Our results in Section 4.2 demonstrate that we must measure the impact of
memory issues as well as the schedule overheads alone to capture the effectiveness
of an OpenMP implementation for many realistic application loops. We control
CLOMP’s memory footprint through the zoneSize parameter that specifies the
amount of memory allocated per zone. In addition, the allocThreads parameter
determines whether each thread allocates its own partitions or if the master
thread allocates all of the partitions. As is well known, the earlier strategy works
better on NUMA systems that employ a first touch policy to place pages.

CLOMPI provides two variants of CLOMP that evaluate the impact of MPI
on OpenMP-parallelized applications. The first, CLOMPI-No Comm. is identi-
cal to CLOMP, except that it calls MPI Init() at the beginning of the run and
MPI Finalize() at the end. These calls ensure that the MPI runtime, includ-
ing any additional threads, runs concurrently with CLOMP’s OpenMP tests.
CLOMPI-SendRecv, the second variant, includes actual MPI communication in
the form of a single MPI Sendrecv() operation in the calc deposit() routine.
This communication moves an MPI DOUBLE value one step along a virtual ring
that includes all the application nodes.

4 Experimental Results

In this section, we demonstrate that CLOMP provides the context of applica-
tion OpenMP usage for results obtained with the EPCC microbenchmarks [13]
through results on three different shared memory nodes. The LLNL Atlas sys-
tem has dual core, quad socket (8-way) 2.4GHz Opteron, 16GB main memory
nodes. Each core has 64KB L1 instruction and data caches and a 1MB L2 cache;
each dual core chip has a direct connection to 4GB of local memory with Hyper-
Transport connections to the memories of the other chips. The LLNL Thunder
system has 4-way 1.4GHz Itanium2, 4GB main memory nodes. Each single core
chip has 16KB instruction and data caches, a 256KB L2 cache and a 4MB L3
cache. All four processors on a node share access to main memory through four
memory hubs. Our experiments on Thunder and Atlas use the Intel compiler ver-
sion 9.1, including its OpenMP run time. The LLNL uP system has dual core,
quad socket (8-way) 1.9GHz Power5, 32 GB main memory nodes. Each core has
private 64KB instruction and 32KB data caches while a 1.9MB L2 cache and a
36MB L3 cache are shared between the two cores on each chip. Each dual core
chip has a direct connection to 8GB of local memory with connections through
the other chips to their memories. Our experiments on uP use the IBM xlc
compiler version 7.0, including its OpenMP run time.

All experiments on all platforms use the -O3 optimization level. We used
thread affinity to ensure each thread used a different core but the threads were
not bound, meaning that the operating system could move them. We relied on
the kernel’s memory affinity algorithm to keep memory close to the threads that
allocated it but the exact details of the algorithms used are unknown.

4.1 OpenMP Overheads Measured with EPCC

We measured the overheads of OpenMP constructs on our target platforms with
the EPCC microbenchmark suite. Figure 4 presents the results of the synchro-
nization microbenchmark and Figure 5 show the scheduling microbenchmark.
All figures list OpenMP constructs on the x-axis and their average overhead
from ten runs in processor cycles on the y-axis. The synchronization benchmark
data is plotted on a linear y-axis and the scheduling data uses a logarithmic axis.

The synchronization microbenchmark data shows several interesting effects.
First, while the overheads of synchronization constructs with Intel OpenMP vary
little with the number of threads, they rise dramatically as the number of threads
increases with IBM OpenMP. However, despite its poor scaling, IBM OpenMP

0

20000

40000

60000

80000

100000

120000

Atlas Thunder uP Atlas Thunder uP Atlas Thunder uP

Cy
cl

es
1

2

4

8

PARALLEL FOR PARALLEL FOR

0

20000

40000

60000

80000

100000

120000

140000

Atlas Thunder uP Atlas Thunder uP Atlas Thunder uP Atlas Thunder uP

Cy
cl

es

1

2

4

8

ATOMIC CRITICAL SINGLE LOCK/
UNLOCK

0

20000

40000

60000

80000

100000

120000

Atlas Thunder uP Atlas Thunder uP Atlas Thunder uP

Cy
cl

es
1

2

4

8

BARRIER ORDERED REDUCTION

Fig. 4. EPCC Synchronization Results

is less expensive for most OpenMP constructs The exceptions are the atomic
and critical and parallel loop constructs, which have higher overhead with
IBM OpenMP on larger thread counts. Overall, most synchronization overheads
are on the order of tens of thousands of cycles. In particular, a barrier costs
between 27,000 and 38,000 cycles with Intel OpenMP and from 7,000 to 31,000
with IBM OpenMP. The overhead of a loop construct is 28,000-40,000 cycles with
Intel OpenMP and ranges from 1,400 to 100,000 cycles with IBM OpenMP. The
overhead of a combined parallel loop construct is typically a little larger than
the maximum overhead of the separate constructs.

The overhead of different schedule kinds varies between our platforms also, as
shown in Figures 5 (the y-axis is logarithmic). The overhead of the loop construct
changes little as the number of threads increases with our two Intel OpenMP
platforms for a fixed schedule kind and associated chunk size. Further, static
scheduling overhead is similar for all chunk sizes. In contrast, dynamic schedul-
ing overhead drops off exponentially with increasing chunk size while guided
scheduling overhead falls linearly. The reduced overheads reflect that the dy-
namic and guided mechanisms impose a cost every time they are invoked. Since
larger chunks imply fewer invocations of the chunk assignment mechanism, they
impose a smaller overhead. This drop-off is less pronounced for guided schedul-
ing because it uses smaller chunks at the end of the allocation process, while
dynamic scheduling uses similar chunk sizes throughout. Nonetheless, dynamic
and guided scheduling overheads are consistently higher than static scheduling
overhead on the Intel OpenMP platforms, ranging from twice as high with a
chunk size of 128 to a factor of ten higher on Thunder and 50 on Atlas with
a chunk size of one. On Thunder, guided scheduling overhead with a chunk
size of 32 is 1.8x lower than the static scheduling overhead; the reason for this
is unclear. The overheads of different schedule kinds with IBM OpenMP rise
superlinearly with the number of threads. However, IBM OpenMP overheads

1

100

10000

1000000

100000000

1 4 16 64 1 4 16 64 1 4 16 64

Cy
cl

es

Chunk Size

1

2

4

8

Atlas Thunder uP

Dynamic Schedule

1

10

100

1000

10000

100000

1000000

1 4 16 64 1 4 16 64 1 4 16 64

Cy
cl

es

Chunk Size

1

2

4

8

Static Schedule
Atlas Thunder uP

1
10

100
1000

10000
100000

1000000
10000000

1 2 4 8 16 1 2 4 8 16 32 1 2 4 8 16

Cy
cl

es

Chunk Size

1

2

4

8

Guided Schedule
Atlas Thunder uP

Fig. 5. EPCC Scheduling Results

exhibit the same patterns with respect to chunk size patterns as seen with Intel
OpenMP except that static scheduling shows even steeper overhead drops than
dynamic and guided scheduling with increasing chunk size. In addition, static
scheduling overhead is not much lower than the other schedule kinds with the
same chunk size and is sometimes larger.

The EPCC results capture the relative cost of different schedule kinds on our
platforms. When compared to Intel OpenMP, IBM OpenMP with dynamic and
guided scheduling is always cheaper with one thread and is usually cheaper with
two. In all other cases, IBM OpenMP is more expensive as its poor scalability
overtakes its good sequential performance. The results demonstrate that users
should use static scheduling with Intel OpenMP unless their loop bodies have
very significant load imbalances while, with IBM OpenMP, the more flexible
schedule kinds are more likely to prove worthwhile. However, these low level
EPCC results do not include sufficient information to determine if an application
can compensate for the overheads. While it helps to convert the overheads to
cycles from the microseconds that the test suite reports, we still need measures
that capture the effect of these overheads for realistic application scenarios.

4.2 Capturing the Impact of OpenMP Overheads with CLOMP

We model application scenarios through CLOMP parameter settings. All results
presented here set numPartitions to 64 and flopScale to 1. CLOMP’s default
parameters, including numZonesPerPart equal to 100, model the relatively small
loop sizes of many multiphysics application. The defaults use the minimum zone
size of 32 bytes, which provides the most opportunity for prefetching and lim-
its memory system pressure, and have the master thread allocate all memory
similarly to the usual default in most applications.

1.0

2.0

3.0

4.1

5.0

5.8

6.8

8.1

1.0
1.6

2.3
2.7

0.9 1.0 0.9 0.81.0
1.6

2.2
2.5

0.6 0.5 0.5 0.4
1.0

0.5 0.5 0.5 0.4 0.4 0.4 0.4

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Sp
ee

du
p

vs
 S

er
ia

l R
un

ti
m

e

Number of Threads

Bestcase OpenMP

Static Parallel For

Manual Threading

Dynamic Parallel For

Atlas

1.0

2.0

2.8

4.2

1.0

1.5

2.1

2.8

1.0

1.5

2.0

2.5

1.0

0.6
0.8

0.9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4

Sp
ee

du
p

vs
 S

er
ia

l P
er

fo
rm

an
ce

Number of Threads

Bestcase OpenMP
Static Parallel For
Manual Threading
Dynamic Parallel For

Thunder

1.0

2.0

3.0

3.9

4.9

5.9

6.7

7.9

1.0

1.8

2.5
3.0

3.3 3.5 3.5
2.8

1.0
0.7 0.6 0.4 0.3 0.2 0.1 0.1

1.0
1.4

1.9 2.2 2.3 2.0 1.9 1.7

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Sp
ee

du
p

vs
 S

er
ia

l R
un

ti
m

e

Number of Threads

Bestcase OpenMP

Static Parallel For

Manual Threading

Dynamic Parallel For

uP

Fig. 6. CLOMP Untuned Default Scenario

The untuned results, shown in Figure 6, use the default run time environment
variable settings, which is the most likely choice of application programmers.
With these settings the (unrealistic) best-case configuration scales well up to
8 threads, which shows that good performance for the loop sizes common to
multiphysics applications are possible. However, the realistic configurations all
scale poorly, even causing increased run times in many cases.

The tuned results, shown in Figure 7, reflect the impact of changing environ-
ment settings so idle threads spin instead of sleep on uP and so idle threads spin
much longer (KMP BLOCKTIME=100000) before they sleep on Atlas and Thunder
(we used these settings for the EPCC results presented in Section 4.1). These
settings, which are appropriate for nodes dedicated to a single user, result in
improved scaling for the manual and for-static scale configurations on both
uP and Atlas. However, the actual speed ups, no more than 3.9, are still disap-
pointing in light of the potential demonstrated by the best-case configuration.
Further, the for-dynamic configuration still does not have sufficient work to
compensate for the high overhead of the dynamic schedule kind. In fact, the
“tuned” environment settings actually caused a slowdown for for-dynamic on
uP and they did not improve performance on Thunder.

Figure 8 focuses on this effect by looking at the running times of several key
components of CLOMP on uP when three major runtime parameters of IBM
OpenMP are varied. Specifically, we show the cost in microseconds of #pragma
omp barrier and cost of each of our four parallelization options in microseconds
per loop iteration. The runtime parameters are:

– Spins: number of times each thread spin waits before it calls yield
– Yields: number of times a thread yields before it calls sleep
– Delay: time (unspecified units) between each scan of the work queue

1.0

2.0

2.8

3.8

4.6

5.4

6.2
6.6

1.0

1.7
2.0

2.4
2.6 2.8 3.0 3.0

1.0

1.8

2.3
2.6

3.0
3.3 3.4 3.5

1.0
0.6 0.6 0.6 0.5 0.5 0.4 0.4

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Sp
ee

du
p

vs
 S

er
ia

l R
un

ti
m

e

Number of Threads

Bestcase OpenMP

Static Parallel For

Manual Threading

Dynamic Parallel For

uP

1.0

2.0

3.0

4.2

5.1

6.0

6.8

8.3

1.0

1.6

2.3
2.8

3.1
3.4 3.6 3.9

1.0

1.6
2.2

2.6 2.8 3.1 3.1 3.0

1.0
0.5 0.5 0.6 0.5 0.5 0.5 0.5

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Sp
ee

du
p

vs
 S

er
ia

l R
un

ti
m

e

Number of Threads

Bestcase OpenMP
Static Parallel For
Manual Threading
Dynamic Parallel For

Atlas

1.0

2.0

3.5

3.9

1.0

1.6

2.6 2.7

1.0

1.5

2.5 2.5

1.0

0.7
1.0 0.9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4

Sp
ee

du
p

vs
 S

er
ia

l R
un

ti
m

e

Number of Threads

Bestcase OpenMP

Static Parallel For

Manual Threading

Dynamic Parallel For

Thunder

Fig. 7. CLOMP Tuned Default Scenario

For each parameter we evaluated three values: 1, 100 and infinity.
Figure 8 shows that the cost of barriers varies moderately with the different

parameter values. Barriers are fastest when Yields is equal to infinity, regardless
of the other parameters. Spins does not have a consistent effect on barrier per-
formance. Delay is also inconsistent, although setting it to infinity leads to the
worst barrier performance. The default configuration has average performance.

Looking at the parallelization variants, the parameter settings do not affect
best-case, which uses no synchronization. The settings have a small impact
on manual performance due to its barrier calls. In contrast, for-static and
for-dynamic have much stronger dependence o nthe parameter settings. When
Yields is equal to 1, for-static consistently performs poorly, while its per-
formance improves dramatically with Yields set to 100 or infinity. The settings
of Delay and Spins imply small differences in the performance of for-static.
The cost of for-dynamic is much more unstable, with no parameter value con-
sistently better than any other; the best performance occurs with Yields set to
100 and Delay to 1. Overall, different parameter settings provide the best per-
formance with for-dynamic than with for-static, which complicates choosing
appropriate defaults.

The Power5 processors on uP include SMT support that can run two hard-
ware threads simultaneously, using hardware-level instruction scheduling. We
evaluated the performance impact of using this feature by running CLOMP
with 2 threads on each core. Figure 9 shows the relative speedup factor of the 2
threads per core configuration over 1 thread per core. Running 2 threads per core
benefits best-case since it can utilize each core’s functional units more fully.
Overall, SMT can speed up best-case up to 60%. However, other configurations

1

10

100

1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f

O
ri

gi
na

l

1 100 inf 1 100 inf 1 100 inf

1 100 inf

m
ic

ro
se

co
nd

s

CLOMP
1 Thread
per core

OMP Barrier

Bestcase OpenMP

Static Parallel For

Manual Threading

Dynamic Parallel For
Spins

Yields

Delay

Fig. 8. CLOMP Performance on uP with full range of parameters, 1 thread per core

suffer in this mode. Barriers exhibit slowdowns between 20% and 30% because
the interference between threads causes timing noise, which causes individual
threads to arrive at barriers late, causing all threads to slow down. Similarly,
manual, which combines best-case with barrier calls, runs slower since it runs
faster between barriers but then must synchronize its threads at slower bar-
riers. These performance drops are very small when Yields is set to infinity
because this setting ensures that timing noise can never cause some thread to
sleep while waiting at a barrier. However, the slowdown grows to more than 20%
for other parameter settings. We observe similar behavior with for-static and
for-dynamic, which perform best with Yields set to infinity, and consistently
better with Yields set to 1 than 100 since the smaller setting reduces timing
noise by keeping inactive threads from interfering with working threads. Finally,
for-dynamic experiences less slowdown than for-static because its dynamic
work allocation policy reduces load imbalance resulting from timing noise.

These results highlight the complexity of choosing the best OpenMP config-
uration, a task for which CLOMP results provide guidance. For our subsequent
experiments we consistently used the modified OpenMP flags that optimized
for the best performance of for-static rather than for-dynamic because the
latter has much worse performance than the best of manual and for-static.

We examined the effects of memory bandwidth on the performance of paral-
lel loops by increasing the number of zones per partition by a factor of 10 (1,000
zones per partition), which corresponds to some multiphysics application runs
as well as some science codes. The results for this scenario, shown in Figure 10,
exhibit outstanding scaling since the single core’s memory bandwidth dominates
performance of the sequential run. In fact, we observe superlinear speedups with
manual and for-static on uP (e.g., 8.7x on with 8 threads) and on Atlas (peak-
ing at 36x on 7 threads). The dramatic improvement on Atlas arises from the
system’s NUMA architecture, in which the penalty for accessing remote memory

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1

10
0

in
f 1

10
0

in
f 1

10
0

in
f 1

10
0

in
f 1

10
0

in
f 1

10
0

in
f 1

10
0

in
f 1

10
0

in
f 1

10
0

in
f

O
ri

gi
na

l

1 100 inf 1 100 inf 1 100 inf

1 100 inf

CLOMP
2 threads vs

1 thread
per core

OMP Barrier

Bestcase OpenMP

Static Parallel For

Manual Threading

Dynamic Parallel For

Spins

Yields

Delay

m
ic

ro
se

co
nd

s

Fig. 9. CLOMP Relative speedup on uP of 2 threads per core vs 1 thread per core

via Hyper-Transport is relatively very high. Since the problem fits in cache with
more threads, the performance benefit is significant. The cache effects are far
smaller on uP and Thunder since these systems provide uniform memory access,
with uP’s slightly super-linear speedups attributable to its much larger cache.
In all cases, these configurations are very close to the theoretical maximum of
best-case while the for-dynamic configuration results continue to disappoint.

For application scenarios with even larger memory footprints, corresponding
to science codes based on dense linear algebra routines, we no longer observe su-
perlinear speedups since they no longer fit into cache. However, while we observe
consistently good scaling on the uniform memory access systems, these scenarios
provide insight into NUMA performance issues. Figure 11 shows results on Atlas
for scenarios in which we increase the number of zones per partition over the
default scenario 100x (10,000 zones per partition) and 1,000x (100,000 zones per
partition). Here, we compare the two strategies for allocating application state:
serial, where the master thread allocates all memory; and threaded, where
each thread allocates its own memory. For each allocation strategy we show
the speedup of the highest-performing realistic configuration. In both scenarios
the two allocation strategies result in dramatically different performance, with
the threaded allocation achieving near-linear speedup, while the serial alloca-
tion shows little improvement at all scales, similarly to previous observations on
other NUMA systems. While application programmers generally will make the
necessary coding changes to achieve these performance gains, the gains are not
consistent: we still observed significant performance variation in our runs, with
speed ups as low as 4 with eight threads. Examination of /proc data indicates
that the threaded allocation does not guarantee the strict use of local mem-
ory. We are investigating using the numactl command in the NUMA library to
provide more consistent performance.

1.0
2.6

11.6

19.9 19.2

23.3

39.9

30.5

1.0
2.5

11.1

18.7 17.9

21.5

35.8

27.1

1.0
2.5

11.0

18.4 17.9

21.1

34.7

26.0

1.0 1.7 2.3 3.3
1.8 2.4 3.4 2.4

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

Sp
ee

du
p

vs
 S

er
ia

l R
un

ti
m

e

Number of Threads

Bestcase OMP

Static Parallel For

Manual Threading

Dynamic Parallel For

Atlas

1.0

2.1

3.2

4.2

5.4

6.6

7.3

8.9

1.0

2.1

3.1

4.1

5.3

6.5

7.1

8.7

1.0

2.1

3.1

4.1

5.3

6.5

7.1

8.7

1.0
1.5

1.8 2.0
2.5

2.9
3.3

3.6

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8

Sp
ee

du
p

vs
 S

er
ia

l R
un

ti
m

e

Number of Threads

Bestcase OMP

Static Parallel For

Manual Threading

Dynamic Parallel For

uP

1.0

2.0

3.0

4.0

1.0

2.0

2.9

3.9

1.0

2.0

2.9

3.8

1.0

1.3
1.2

1.4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4

Sp
ee

du
p

vs
 S

er
ia

l R
un

ti
m

e

Number of Threads

Bestcase OMP
Static Parallel For
Manual Threading
Dynamic Parallel For

Thunder

Fig. 10. CLOMP 10X Memory Scenario

By providing a best-case performance estimate, CLOMP puts the actual
performance numbers in context of OpenMP overheads, cache effects, and NUMA
effects. The best-case configuration is significantly different from the EPCC
schedule test and represents a contribution of our work. For example, in Fig-
ure 10, the 27.1 speedup for 8 threads on Atlas is great but an even higher
speedup of 30.5 was possible if the OpenMP overheads were lower. Similarly,
the low best-case serial Allocation performance corresponding to the results in
Figure 11 shows that OpenMP overhead is not the problem; NUMA effects are.

4.3 Studying the interactions of MPI and OpenMP

In this section, we evaluate the impact of MPI on Open MP overheads through
the CLOMPI-No Comm and CLOMPI-SendRecv variants of CLOMP using the
same range of configurations on our experimental platforms. Since MPI imple-
mentations often use additional threads to monitor and to manage incoming and
outgoing communication, the impact can be significant. On Thunder and Atlas
the Quadrics and Infiniband network interface cards (NICs) provide additional
processing power for these threads. Thus, their MPI implementations (Quadrics
MPI and MVAPICH) can run these threads without interfering with the appli-
cation, which is exactly the behavior we observed in our experiments on these
platforms.

In constrast, uP’s NICs do not support these threads, which requires IBM’s
MPI to run them on the same cores used for computation. However, the Power5
SMT capability allows MPI threads to share the cores with with CLOMP com-
putational threads at little cost. We measured this effect by running CLOMPI-
NoComm on uP, with 1 CLOMPI-NoComm thread per uP core. Figure 12 shows

1.0
1.5 1.4

1.7
1.4 1.3 1.3 1.3

1.0
1.5

2.5

3.1
3.5

5.0 5.0

7.2

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Sp
ee

du
p

vs
 S

er
ia

l R
un

ti
m

e

Number of Threads

Serial Allocation

Threaded Allocation

Atlas - 100x

1.0

1.6 1.5
2.0

1.4
1.7

1.9

1.3
1.0

1.5

2.3

3.7

4.5

5.5
6.0

7.0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Sp
ee

du
p

vs
 S

er
ia

l R
un

ti
m

e

Number of Threads

Serial Allocation

Threaded Allocation

Atlas - 1000x

Fig. 11. CLOMP 100X and 1000X Memory Scenarios

the costs in microseconds of the key components of CLOMPI-NoComm (top) and
the speedup of each component relative to CLOMP (bottom). Just running the
additional MPI threads, as shown in CLOMPI-NoComm, leads best-case run-
ning 30% slower Since the MPI threads dfo not slow its barriers, manual fares a
little better, slowing down only about 20%.

We observe a complex performance profile with for-static, which exhibits
larger slowdowns with parameters that cause inactive threads to actively spin or
yield rather than sleep (i.e., larger values of Spins and Yields). This behavior
suggests that the MPI threads use functions such as yield() and sleep() to
avoid using the CPU when other threads are active. Thus, the MPI threads can
quickly determine that they have no work to perform when the main compute
threads sleep soon after they have completed their work. In contrast, if the
compute threads spin, the MPI threads awaken at random times and interfere
with the compute threads.

Finally, the MPI threads cause little performance degradation with for-dynamic
since dynamic scheduling adapts to non-deterministic interference. However,
for-dynamic does incur a 20% slowdown when Delay0 is set to infinity since
the threads infrequently check the work queue, resulting in poor adaptation to
interference

We evaluated the effect of MPI communication on OpenMP overheads by
running CLOMPI-SendRecv, which adds an MPI Sendrecv() call to calc deposit(),
on uP. Figure 13 shows the costs in microseconds of all CLOMPI-SendRecv com-
ponents. While barriers have the same cost in CLOMPI-SendRecv and CLOMPI-
NoComm, the various parallelization strategies cost more in absolute time with

1

10

100

1000

m
ic

ro
se

co
nd

s

CLOMPI-
NoComm
1 thread
per core

OMP Barrier

Bestcase OpenMP

Static Parallel For

Manual Threading

Dynamic Parallel For

1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f

O
ri

gi
na

l

1 100 inf 1 100 inf 1 100 inf

1 100 inf

Spins

Yields

Delay

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f

O
ri

gi
na

l

1 100 inf 1 100 inf 1 100 inf

1 100 inf

Sp
ee

du
p

CLOMPI-
NoComm vs

CLOMP
1 Thread
per Core

OMP Barrier

Bestcase OpenMP

Static Parallel For

Manual Threading

Dynamic Parallel For

Spins

Yields

Delay

Fig. 12. CLOMPI-NoComm performance

CLOMPI-SendRecv since it does more work. However, it has essentially the same
performance profile as CLOMPI-NoComm.

5 Conclusion and Future Work

Despite the popularity of shared memory systems and OpenMP’s ease of use,
overheads in OpenMP implementations and shared memory hardware have lim-
ited potential performance gains, thus discouraging the use of OpenMP. This
paper presents CLOMP, a new OpenMP benchmark that models the behavior
of scientific applications that have an overall sequential structure but contain
many loops with independent iterations. CLOMP can be parameterized to rep-
resent a variety of applications, allowing application programmers to evaluate
possible parallelization strategies with minimal effort and OpenMP implemen-
tors to identify overheads that can have the largest impact on real applications.
Our results on three shared memory platforms demonstrate that CLOMP ex-
tends EPCC to capture the application scenarios necessary to characterize the
impact of the overheads measured by EPCC. CLOMP guides selection of run
time environment settings and can identify the impact of architectural features

1

10

100

1000

1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f 1

10
0 in
f

O
ri

gi
na

l

1 100 inf 1 100 inf 1 100 inf

1 100 inf

m
ic

ro
se

co
nd

s

CLOMPI-
SendRecv
1 thread
per core
OMP Barrier

Bestcase OpenMP

Static Parallel For

Manual Threading

Dynamic Parallel For
Spins

Yields

Delay

Fig. 13. CLOMPI-SendRecv performance

such as memory bandwidth, SMT and a NUMA architecture on application per-
formance. The resulting insights can be very useful to application programmers
in choosing the parallelization strategy and hardware that will provide the best
performance for their application.

Overall, our results should not be seen as critiquing the OpenMP implemen-
tations that were used in our experiments. While we noted differences between
them, the most significant issues arose from differences in the underlying archi-
tecture. Ultimately, CLOMP would provide its greatest value if it could guide
architectural refinements that reduce the overheads of dispatching threads for
OpenMP regions. For this reason, we included CLOMP in the benchmark suite
of LLNL’s Sequoia procurement.

References

1. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management
of parallelism in object oriented numerical software libraries. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Com-
puting, pages 163–202. Birkhäuser Press, 1997.

2. L. Blackford, J. Choi, A. Cleary, E. Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammerling, G. Henry, A. Petite, K. Stanley, D. Walker, and R. Whaley. ScaLA-
PACK Users. SIAM, Philadelphia, 1997.

3. V. Bulatov, W. Cai, J. Fier, M. Hiratani, G. Hommes, T. Pierce, M. Tang, M. Rhee,
K. Yates, and T. Arsenlis. Scalable Line Dynamics in ParaDiS. In Proceedings of
IEEE/ACM Supercomputing ’04, Nov. 2004.

4. W. D. Collins, C. M. Bitz, M. L. Blackmon, G. B. . Bonan, C. S. Bretherton, J. A.
Carton, P. Chang, S. C. Doney, J. J. Hack, T. B. Henderson, J. T. Kiehl, W. G.
Large, D. S. McKenna, B. D. Santer, and R. D. Smith. The community climate
system model version 3. Journal of Climate, 19(1):2122–2143, 2006.

5. J. D. de St. Germain, J. McCorquodale, S. Parker, and C. Johnson. A Component-
based Architecture for Parallel Multi-Physics PDE Simulation. In International
Symposium on High Performance and Distributed Computing, 2000.

6. R. Falgout, J. Jones, and U. Yang. The Design and Implementation of HYPRE,
a Library of Parallel High Performance Preconditioners. Numerical Solution of
Partial Differential Equations on Parallel Computers. Springer-Verlag, to appear.

7. T. Germann, K. Kadau, and P. Lomdahl. 25 Tflop/s Multibillion-Atom Molecular
Dynamics Simulations and Visualization/Analysis on BlueGene/L. In Proceedings
of IEEE/ACM Supercomputing ’05, Nov. 2005.

8. F. Gygi, E. Draeger, B. de Supinski, R. Yates, F. Franchetti, S. Kral, J. Lorenz,
C. Überhuber, J. Gunnels, and J. Sexton. Large-Scale First-Principles Molecu-
lar Dynamics simulations on the BlueGene/L Platform using the Qbox code. In
Proceedings of IEEE/ACM Supercomputing ’05, Nov. 2005.

9. J. Hoeflinger and B. R. de Supinski. The openmp memory model. In International
Workshop on OpenMP (IWOMP), 2005.

10. Message Passing Interface Forum. Mpi: A message-passing interface standard.
International Journal of Supercomputer Applications, 8(3/4):165–414, 1994.

11. OpenMP Architecture Review Board. OpenMP application program interface,
version 2.5.

12. J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale. NAMD: Biomolecular Simu-
lation on Thousands of Processors. In Proceedings of IEEE/ACM Supercomputing
’02, Nov. 2002.

13. F. J. L. Reid and J. M. Bull. Openmp microbenchmarks version 2.0. In European
Workshop on OpenMP (EWOMP), 2004.

14. R. Rosner, A. Calder, J. Dursi, B. Fryxell, D. Q. Lamb, J. C. Niemeyer, K. Olson,
P. Ricker, F. X. Timmes, J. W. Truran, H. Tufo, Y.-N. Young, M. Zingale, E. Lusk,
and R. Stevens. Flash code: Studying astrophysical thermonuclear flashes. Journal
on Computing in Science and Engineering, 2(2), 2000.

15. F. Streitz, J. Glosli, M. Patel, B. Chan, R. Yates, B. de Supinski, J. Sexton, and
J. Gunnels. 100+ TFlop Solidification Simulations on BlueGene/L. In Proceedings
of IEEE/ACM Supercomputing ’05, Nov. 2005.

16. B. S. White, S. A. McKee, B. R. de Supinski, B. Miller, D. Quinlan, and M. Schulz.
Improving the Computational Intensity of Unstructured Mesh Applications. In
Proceedings of the 19th ACM International Conference on Supercomputing, June
2005.

